Introduction to the Revised Mathematics TEKS

VERTICAL ALIGNMENT CHART GRADE 5 - ALGEBRA I

The materials are copyrighted (c) and trademarked (tm) as the property of the Texas Education Agency (TEA) and may not be reproduced without the express written permission of TEA, except under the following conditions:

Texas public school districts, charter schools, and Education Service Centers may reproduce and use copies of the Materials and Related Materials for the districts' and schools' educational use without obtaining permission from TEA.

Residents of the state of Texas may reproduce and use copies of the Materials and Related Materials for individual personal use only without obtaining written permission of TEA.

Any portion reproduced must be reproduced in its entirety and remain unedited, unaltered and unchanged in any way.
No monetary charge can be made for the reproduced materials or any document containing them; however, a reasonable charge to cover only the cost of reproduction and distribution may be charged.

Private entities or persons located in Texas that are not Texas public school districts, Texas Education Service Centers, or Texas charter schools or any entity, whether public or private, educational or non-educational, located outside the state of Texas MUST obtain written approval from TEA and will be required to enter into a license agreement that may involve the payment of a licensing fee or a royalty.

For information contact:
Office of Copyrights, Trademarks, License Agreements, and Royalties,
Texas Education Agency,
1701 N. Congress Ave., Austin, TX 78701-1494;
phone: 512-463-9270 or 512-463-9437;
email: copyrights@tea.state.tx.us.
©2013 Texas Education Agency All Rights Reserved 2013
(1) Mathematical process standards. The student uses mathematical processes to acquire and demonstrate mathematical understanding. The student is expected to:
(A) apply mathematics to problems arising in everyday life, society, and the workplace.
(B) use a problem-solving model that incorporates analyzing given information, formulating a plan or strategy, determining a solution, justifying the solution, and evaluating the problem-solving process and the reasonableness of the solution.
(C) select tools, including real objects, manipulatives, paper and pencil, and technology as appropriate, and techniques, including mental math, estimation, and number sense as appropriate, to solve problems.
(D) communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate.
(E) create and use representations to organize, record, and communicate mathematical ideas.
(F) analyze mathematical relationships to connect and communicate mathematical ideas.
(G) display, explain, and justify mathematical ideas and arguments using precise mathematical language in written or oral communication.
(2) Number and operations. The student applies mathematical process standards to represent, compare, and order positive rational numbers and understand relationships as related to place value. The student is expected to:
(B) compare and order two decimals to thousandths and represent comparisons using the symbols >, <, or =.

Comparing and Ordering Numbers

(2) Number and operations. The student applies mathematical process standards to represent and use rational numbers in a variety of forms. The student is expected to:
(D) order a set of rational numbers arising from mathematical and real-world contexts.
(2) Number and operations. The student applies mathematical process standards to represent and use real numbers in a variety of forms. The student is expected to:
(D) order a set of real numbers arising from
mathematical and real-world contexts.

Representing and Relating Numbers Using Number Lines
(2) Number and operations. The student applies mathematical process standards to represent and use rational numbers in a variety of forms. The student is expected to:
(B) identify a number, its opposite, and its absolute value.
(C) locate, compare, and order integers and rational numbers using a number line.
(2) Number and operations. The student applies mathematical process standards to represent and use real numbers in a variety of forms. The student is expected to:
(B) approximate the value of an irrational number, including π and square roots of numbers less than 225, and locate that rational number approximation on a number line.
Representing and Classifying Numbers

(2) Number and operations. The student applies mathematical process standards to represent and use rational numbers in a variety of forms. The student is expected to:	(2) Number and operations. The student applies mathematical process standards to represent and use rational numbers in a variety of forms. The student is expected to:	(2) Number and operations. The student applies mathematical process standards to represent and use real numbers in a variety of forms. The student is expected to:
(A) classify whole numbers, integers, and rational numbers using a visual representation such as a Venn diagram to describe relationships between sets of numbers.	(A) extend previous knowledge of sets and subsets using a visual representation to describe relationships between sets of rational numbers.	(A) extend previous knowledge of sets and subsets using a visual representation to describe relationships between sets of real numbers.

(2) Number and operations. The student applies mathematical process standards to represent, compare, and order positive rational numbers and understand relationships as related to place value. The student is expected to:
(A) represent the value of the digit in decimals through the thousandths using expanded notation and numerals.

Applying Strategies for Estimation
(2) Number and operations. The student applies mathematical process standards to represent, compare, and order positive rational numbers and understand relationships as related to place value. The student is expected to:
(C) round decimals to tenths or hundredths.
process standards to represent
and use rational numbers in a
variety of forms. The student is
expected to:
(E) extend representations for
division to include fraction
notation such as a / b represents
the same number as $a \div b$ where
$b \neq 0$.
Determining Equivalence and
Comparing Part-to-Whole
Relationships
(5) Proportionality. The student
applies mathematical process
standards to solve problems
involving proportional
relationships. The student is
expected to:
(C) use equivalent fractions,
decimals, and percents to show
equal parts of the same whole.
Adding and Subtracting Fractions and Rational Numbers
(3) Number and operations. The student applies mathematical process standards to develop and use strategies and methods for positive rational number computations in order to solve problems with efficiency and accuracy. The student is expected to:
(H) represent and solve addition and subtraction of fractions with unequal denominators referring to the same whole using objects and pictorial models and properties of operations.
(K) add and subtract positive
(3) Number and operations.

The student applies
mathematical process standards
to add, subtract, multiply, and divide while solving problems and justifying solutions. The student is expected to:
rational numbers fluently.
(B) apply and extend previous understandings of operations to solve problems using addition, subtraction, multiplication, and division of rational numbers
(A) add, subtract, multiply, and divide rational numbers fluently.
 student applies mathematical process standards to develop and use strategies and methods for positive rational number computations in order to solve problems with efficiency and accuracy. The student is expected to:
(B) multiply with fluency a three-digit number by a twodigit number using the standard algorithm.
(D) represent multiplication of decimals with products to the hundredths using objects and pictorial models, including area models.
(E) solve for products of decimals to the hundredths, including situations involving money, using strategies based on place-value understandings, properties of operations, and the relationship to the multiplication of whole numbers.

(I) represent and solve

 multiplication of a whole number and a fraction that refers to the same whole using objects and pictorial models, including area models.(E) multiply and divide positive rational numbers fluently.
(B) apply and extend previous understandings of operations to solve problems using addition, subtraction, multiplication, and division of rational numbers.
(3) Number and operations. The (3) Number and operations. The 3) Number and operations. The
(E) multiply and divide positive rational numbers fluently.
student applies mathematical process standards to represent addition, subtraction, multiplication, and division while solving problems and justifying solutions. The student is expected to:
(A) add, subtract, multiply, and divide rational numbers fluently.
(B) apply and extend previous understandings of operations to solve problems using addition, subtraction, multiplication, and division of rational numbers.
3) Number and operations. The student applies mathematical process standards to add, subtract, multiply, and divide while solving problems and justifying solutions. The student is expected to:
\square

Number and operations The student applies mathematical process standards to develop and use strategies and methods for positive rational number computations in order to solve problems with efficiency and accuracy. The student is expected to:
student applies mathematical process standards to represent addition, subtraction,
multiplication, and division while solving problems and justifying solutions. The student is expected to:
(B) determine, with and without computation, whether a quantity is increased or decreased when multiplied by a fraction, including values greater than or less than one.
(3) Number and operations. Th
student applies mathematical process standards to develop and use strategies and methods for positive rational number computations in order to solve problems with efficiency and accuracy. The student is expected to:
(C) solve with proficiency
quotients of up to a four
dividend by a two-digit
using strategies and the
standard algorithm.

(F) represent quotients of

 decimals to the hundredths, up to four-digit dividends and twodigit whole number divisors, using objects and pictorial models, including area models. (G) solve for quotients of decimals to the hundredths, up to four-digit dividends and twodigit whole number divisors, using strategies and algorithms, including the standard algorithm.(J) represent division of a unit fraction by a whole number and the division of a whole number by a unit fraction such as $1 / 3 \div 7$ and $7 \div 1 / 3$ using objects and pictorial models, including area models.
(L) divide whole numbers by unit fractions and unit fractions by whole numbers.
(3) Number and operations. The student applies mathematical process standards to represent addition, subtraction, multiplication, and division while solving problems and justifying solutions. The student is expected to:
(A) recognize that dividing by a rational number and multiplying by its reciprocal result in equivalent values.
3) Number and operations. The student applies mathematical process standards to add, subtract, multiply, and divide while solving problems and justifying solutions. The student is expected to:
(A) add, subtract, multiply, and divide rational numbers fluently.
(B) apply and extend previous understandings of operations to solve problems using addition, subtraction, multiplication, and division of rational numbers.
(A) add, subtract, multiply, and divide rational numbers fluently.
(B) apply and extend previous understandings of operations to solve problems using addition, subtraction, multiplication, and division of rational numbers.

Connecting Counting and

 Divisibility(4) Algebraic reasoning. The student applies mathematical process standards to develop concepts of expressions and equations. The student is expected to:
(A) identify prime and
composite numbers.

Representing Problem Situations with the Equal Sign

(4) Algebraic reasoning. The student applies mathematical process standards to develop concepts of expressions and equations. The student is expected to:
(B) represent and solve multistep problems involving the four operations with whole numbers using equations with a letter standing for the unknown quantity.
(7) Expressions, equations, and relationships. The student applies mathematical process standards to develop concepts of expressions and equations. The student is expected to:
(B) distinguish between expressions and equations verbally, numerically, and algebraically.

Representing Problem Situations with Equations and Inequalities
(9) Expressions, equations, and relationships. The student applies mathematical process standards to use equations and inequalities to represent situations. The student is expected to:
(A) write one-variable, one-step equations and inequalities to represent constraints or conditions within problems.
(B) represent solutions for onevariable, one-step equations and inequalities on number lines.
(10) Expressions, equations, and relationships. The student applies mathematical process standards to use one-variable equations and inequalities to represent situations. The student is expected to:
(A) write one-variable, two-step equations and inequalities to represent constraints or conditions within problems.
(B) represent solutions for onevariable, two-step equations and inequalities on number lines.

Representing with Equations and Inequalities
(9) Expressions, equations, relationships. The student applies mathematical process standards to use equations and inequalities to represent situations. The student is expected to:
(C) write corresponding realworld problems given onevariable, one-step equations or inequalities.
(10) Expressions, equations, and relationships. The student applies mathematical process standards to use one-variable equations and inequalities to represent situations. The student is expected to:
(C) write a corresponding realworld problem given a onevariable, two-step equation or inequality.
8) Expressions, equations, and relationships. The student applies mathematical process standards to use one-variable equations or inequalities in problem situations. The student is expected to:
(B) write a corresponding realworld problem when given a one-variable equation or inequality with variables on both sides of the equal sign using rational number coefficients and constants.
(4) Algebraic reasoning. The student applies mathematical process standards to develop concepts of expressions and equations. The student is expected to:
(B) represent and solve multi-step problems involving the four operations with whole numbers using equations with a letter standing for the unknown quantity.

Representing and Solving Problems with Equations and Inequalities

(10) Expressions, equations, and relationships. The student applies mathematical process standards to use equations and inequalities to solve problems. The student is expected to:
(A) model and solve one-variable, one-step equations and inequalities that represent problems, including geometric concepts.

(B) determine if the given value(s) make(s) one-variable, one-step equations or inequalities true.
(11) Expressions, equations, and relationships. The student applies mathematical process standards to solve one-variable equations and inequalities. The student is expected to:
(A) model and solve onevariable, two-step equations and inequalities.
(B) determine if the given value(s) make(s) onevariable, two-step equations and inequalities true
(8) Expressions, equations, and relationships. The student applies mathematical process standards to use one-variable equations or inequalities in problem situations. The student is expected to:
(C) model and solve one-variable equations with variables on both sides of the equal sign that represent mathematical and realworld problems using rational number coefficients and constants.
(9) Expressions, equations, and relationships. The student applies mathematical process standards to use multiple representations to develop foundational concepts of simultaneous linear equations. The student is expected to
(A) identify and verify the values of x and y that simultaneously satisfy two linear equations in the form $y=m x+b$ from the intersections of the graphed equations.
(5) Linear functions, equations, and inequalities. The student applies the mathematical process standards to solve, with and without technology, linear equations and evaluate the reasonableness of their solutions. The student is expected to:
(A) solve linear equations in one variable, including those for which the application of the distributive property is necessary and for which variables are included on both sides.
(B) solve linear inequalities in one variable, including those for which the application of the distributive property is necessary and for which variables are included on both sides.
(3) Linear functions, equations, and inequalities. The student applies the mathematical process standards when using graphs of inear functions, key features, and related transformations to represent in multiple ways and solve, with and without technology, equations, inequalities, and systems of equations. The student is expected to:
(F) graph systems of two linear equations in two variables on the coordinate plane and determine the solutions if they exist. (G) estimate graphically the solutions to systems of two linear equations with two variables in real-world problems.

(4) Algebraic reasoning. The student applies mathematical process standards to develop concepts of expressions and equations. The student is expected to:
(4) Proportionality. The student applies mathematical process standards to develop an understanding of proportional relationships in problem situations. The student is expected to:
(4) Proportionality. The student applies mathematical process standards to represent and solve problems involving proportional relationships. The student is expected to:
(5) Proportionality. The student applies mathematical process standards to use proportional and non-proportional relationships to develop foundational concepts of functions. The student is expected to:
(2) Linear functions, equations, and inequalities. The student applies the mathematical process standards when using properties of linear functions to write and represent in multiple ways, with and without technology, linear equations, inequalities, and systems of equations. The student is expected to:

(C) generate a numerical

 pattern when given a rule in the form $y=a x$ or $y=x+a$ and graph.(D) recognize the difference between additive and multiplicative numerical patterns given in a table or graph.
(A) compare two rules verbally, numerically, graphically, and symbolically in the form of $y=a x$ or $y=x+a$ in order to differentiate between additive and multiplicative relationships.

(6) Expressions, equations

 and relationships. The student applies mathematical process standards to use multiple representations to describe algebraic relationships. The student is expected to:(A) identify independent and dependent quantities from tables and graphs.
A) represent constant rates of change in mathematical and realworld problems given pictorial, tabular, verbal, numeric, graphical, and algebraic representations, including $d=r t$.
(C) determine the constant of proportionality ($k=y / x$) within mathematical and real-world problems.
(7) Expressions, equations, and relationships. The student applies mathematical process standards to represent linear relationships using multiple representations. The student is expected to:
A) represent linear proportional situations with tables, graphs, and equations in the form of $y=k x$.
(D) write and solve equations involving direct variation.
(E) solve problems involving direct variation.
(B) represent linear non-proportional situations with tables, graphs, and equations in the form of $y=m x+b$, where $b \neq 0$.
(B) write linear equations in
two variables in various
forms, including $y=m x+b, A x$
$+B y=C$, and
$y-y 1=m(x-x 1)$, given one
point and the slope and given
two points two variables in various forms, including $y=m x+b, A x$ $+B y=C$, and point and the slope and given two points

Applying Multiple Representations for Foundations of Functions

(6) Expressions, equations, and relationships. The student applies mathematical process standards to use multiple representations to describe algebraic relationships. The student is expected to:
7) Expressions, equations, and relationships. The student applies mathematical process standards to represent linear relationships using multiple representations. The student is expected to:
5) Proportionality. The student applies mathematical process standards to use proportional and non-proportional relationships to develop foundational concepts of functions. The student is expected to:
2) Linear functions, equations and inequalities. The student applies the mathematical process standards when using properties of linear functions to write and represent in multiple ways, with and without technology, linear equations, inequalities, and systems of equations. The student is expected to:
(C) write linear equations in two variables given a table of values, a graph, and a verbal description
4) Linear functions, equations and inequalities. The student applies the mathematical process standards to formulate statistica relationships and evaluate their reasonableness based on realworld data. The student is expected to:
(A) calculate, using technology, he correlation coefficient between two quantitative variables and interpret this quantity as a measure of the strength of the linear association.
D) use a trend line that approximates sets of data to make predictions.
(G) identify functions using sets of ordered pairs, tables, mappings, and graphs.
(H) identify examples of
proportional and non
proportional functions that arise from mathematical and real-world problems.

(4) Algebraic reasoning. The student applies mathematical process standards to develop concepts of expressions and equations. The student is expected to:

(G) use concrete objects and

 pictorial models to develop the formulas for the volume of a rectangular prism, including the special form for a cube $(V=I \times w \times h, V=s \times s \times s$, and $V=B h)$.
Connecting Algebra and Geometry

(8) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to represent relationships and solve problems. The student is expected to:
(B) model area formulas for parallelograms, trapezoids, and triangles by decomposing and rearranging parts of these shapes.

(H) represent and solve problems related to perimeter and/or area and related to volume
(C) write equations that represent problems related to the area of rectangles, parallelograms, trapezoids, and triangles and volume of right rectangular prisms where dimensions are positive rational numbers.
(8) Expressions, equations, and relationships. The student applies mathematical process standards to develop geometric relationships with volume. The student is expected to:
(A) model the relationship between the volume of a rectangular prism and a rectangular pyramid having both congruent bases and heights and connect that relationship to the formulas. (B) explain verbally and symbolically the relationship between the volume of a triangular prism and a triangular pyramid having both congruent bases and heights and connect that relationship to the formulas.
(C) use models to determine the approximate formulas for the circumference and area of a circle and connect the models to the actual formulas.
(6) Expressions, equations, and relationships. The student applies mathematical process standards to develop mathematical relationships and make connections to geometric formulas. The student is expected to:
(A) describe the volume formula $V=B h$ of a cylinder in terms of its base area and its height.
(B) model the relationship between the volume of a cylinder and a cone having both congruent bases and heights and connect that relationship to the formulas.
(C) use models and diagrams to explain the Pythagorean theorem.

(4) Algebraic reasoning. The

 student applies mathematical process standards to develop concepts of expressions and equations. The student is expected to:(H) represent and solve problems related to perimeter and/or area and related to volume

Connecting Algebra and Geometry

(8) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to represent relationships and solve problems. The student is expected to:
(D) determine solutions for problems involving the area of rectangles, parallelograms, trapezoids, and triangles and volume of right rectangular prisms where dimensions are positive rational numbers.
(9) Expressions, equations, and relationships. The student applies mathematical process standards to solve geometric problems. The student is expected to:
(A) solve problems involving the volume of rectangular prisms, triangular prisms, rectangular pyramids, and triangular pyramids.
(B) determine the circumference and area of circles.
(C) determine the area of composite figures containing combinations of rectangles, squares, parallelograms, trapezoids, triangles, semicircles, and quarter circles.
(D) solve problems involving the lateral and total surface area of a rectangular prism, rectangular pyramid, triangular prism, and triangular pyramid by determining the area of the shape's net.
(7) Expressions, equations, and relationships. The student applies mathematical process standards to use geometry to solve problems. The student is expected to:
(A) solve problems involving the volume of cylinders, cones, and spheres.
(B) use previous knowledge of surface area to make connections to the formulas for lateral and total surface area and determine solutions for problems involving rectangular prisms, triangular prisms, and cylinders.
(C) use the Pythagorean Theorem and its converse to solve problems.
(D) determine the distance between two points on a coordinate plane using the Pythagorean Theorem.

8) Expressions, equations, and

 relationships. The student applies mathematical process standards to use geometry to represent relationships and solve problems. The student is expected to:(A) extend previous knowledge of triangles and their properties to include the sum of angles of a triangle, the relationship between the lengths of sides and measures of angles in a triangle, and determining when three lengths form a triangle.
11) Expressions, equations, and relationships. The student applies mathematical process standards to solve one-variable equations and inequalities. The student is expected to:
C) write and solve equations using geometry concepts, including the sum of the angles in a triangle, and angle relationships.
(8) Expressions, equations, and relationships. The student applies mathematical process standards to use one-variable equations or inequalities in problem situations. The student is expected to:
(D) use informal arguments to establish facts about the angle sum and exterior angle of triangles, the angles created when parallel lines are cut by a transversal, and the angle-angle criterion for similarity of triangles.

(4) Proportionality. The student

 applies mathematical process standards to develop an understanding of proportional relationships in problem situations. The student is expected to:(4) Proportionality. The student applies mathematical process standards to represent and solve problems involving proportional relationships. The student is expected to:
(B) apply qualitative and quantitative reasoning to solve prediction and comparison of real-world problems involving ratios and rates.
(C) give examples of ratios as multiplicative comparisons of two quantities describing the same attribute.
(A) represent constant rates of change in mathematical and real(D) give examples of rates as the comparison by division of two quantities having different attributes, including rates as quotients.
(E) represent ratios and percents with concrete models, fractions, and decimals.
(F) represent benchmark fractions and percents such as $1 \%, 10 \%, 25 \%$, $331 / 3 \%$, and multiples of these values using 10 by 10 grids, strip diagrams, number lines, and numbers.
(G) generate equivalent forms of fractions, decimals, and percents using real-world problems, including problems that involve money.
(H) convert units within a measurement system, including the use of proportions and unit rates.

(5) Proportionality. The student applies mathematical process standards to solve problems involving proportional relationships. The student is expected to:

(A) represent mathematical and real-world problems involving ratios and rates using scale factors, tables, graphs, and proportions.
(B) solve real-world problems to find the whole given a part and the percent, to find the part given the whole and the percent, and to find the percent given the part and the whole, including the use of concrete and pictorial models. (C) use equivalent fractions, decimals, and percents to show equal parts of the same whole.
(D) solve problems involving ratios, rates, and percents, including multistep problems involving percent increase and percent decrease, and financial literacy problems.

Connecting Proportionality and

 Geometry(5) Proportionality. The student applies mathematical process standards to use geometry to describe or solve problems involving proportional relationships. The student is expected to: (A) generalize the critical attributes of similarity, including ratios within and between similar shapes. (B) describe π as the ratio of the circumference of a circle to its diameter.
(C) solve mathematical and real-
world problems involving
similar shape and scale drawings.

Grade 5	Grade 6	Grade 7	Grade 8 Generalizing Attributes of Similar Figures	Algebra I
			(3) Proportionality. The student applies mathematical process standards to use proportional relationships to describe dilations. The student is expected to:	
			(A) generalize that the ratio of corresponding sides of similar shapes are proportional, including a shape and its dilation.	
			(B) compare and contrast the attributes of a shape and its dilation(s) on a coordinate plane.	
			Generalizing Attributes with Transformational Geometry	
			(10) Two-dimensional shapes. The student applies mathematical process standards to develop transformational geometry concepts. The student is expected to:	
			(A) generalize the properties of orientation and congruence of rotations, reflections, translations, and dilations of twodimensional shapes on a coordinate plane.	
			(B) differentiate between transformations that preserve congruence and those that do not.	
Grade 5	Grade 6	Grade 7	Grade 8	Algebra 1
Classifying and Sorting TwoDimensional and ThreeDimensional Figures				
(5) Geometry and measurement. The student applies mathematical process standards to classify twodimensional figures by attributes and properties. The student is expected to:				
(A) classify two-dimensional figures in a hierarchy of sets and subsets using graphic organizers based on their attributes and properties.				
Grade 5	Grade 6	Grade 7	Grade 8	Algebra 1

(7) Geometry and measurement. The student applies mathematical process standards to select appropriate units, strategies, and tools to solve problems involving measurement. The student is expected to:	(4) Proportionality. The student applies mathematical process standards to develop an understanding of proportional relationships in problem situations. The student is expected to:	(4) Proportionality. The student applies mathematical process standards to represent and solve problems involving proportional relationships. The student is expected to:
(A) solve problems by calculating conversions within a measurement system, customary or metric.	(H) convert units within a measurement system, including the use of proportions and unit rates.	(E) convert between measurement systems, including the use of proportions and the use of unit rates.

Measuring Area and Volume

(6) Geometry and measurement. The student applies mathematical process standards to understand, recognize, and quantify volume. The student is expected to:
(A) recognize a cube with side length of one unit as a unit cube having one cubic unit of volume and the volume of a threedimensional figure as the number of unit cubes (n cubic units) needed to fill it with no gaps or overlaps if possible.
(B) determine the volume of a rectangular prism with whole number side lengths in problems related to the number of layers times the number of unit cubes in the area of the base.

Applying Transformational Geometry and Area Measurement
10) Two-dimensional shapes. The student applies mathematical process standards to develop transformational geometry concepts. The student is expected to:
(D) model the effect on linear and area measurements of dilated two-dimensional shapes.

Graphing on the Coordinate Plane
(8) Geometry and measurement. The student applies mathematical process standards to identify locations on a coordinate plane. The student is expected to:
(A) describe the key attributes of the coordinate plane, including perpendicular number lines (axes) where the intersection (origin) of the two lines coincides with zero on each number line and the given point $(0,0)$. the x-coordinate, the first number in an ordered pair, indicates movement parallel to the x-axis starting at the origin. the y-coordinate, the second number, indicates movement parallel to the y-axis starting at the origin.
(B) describe the process for graphing ordered pairs of numbers in the first quadrant of the coordinate plane.
(C) graph in the first quadrant of the coordinate plane ordered pairs of numbers arising from mathematical and real-world problems, including those generated by number patterns or found in an input-output table.
(11) Measurement and data.

The student applies mathematical process standards to use coordinate geometry to identify locations on a plane.
The student is expected to
The student is expected to
(A) graph points in all four quadrants using ordered pairs of rational numbers.

Representing Dilations on the Coordinate Plane
(3) Proportionality. The student applies mathematical process standards to use proportional relationships to describe dilations. The student is expected to:
(C) use an algebraic representation to explain the effect
of a given positive
rational scale factor applied to twodimensional figures on a coordinate plane with the origin as the center of dilation.

Applying Transformational Geometry and the Coordinate Plane
(10) Two-dimensional shapes. The student applies mathematical process standards to develop transformational geometry concepts. The student is expected to:

C) explain the effect of

 translations, reflections over the x or y-axis, and rotations limited to $90^{\circ}, 180^{\circ}, 270^{\circ}$, and 360° as applied to two-dimensional shapes on a coordinate plane using an algebraic representation.| Grade 5 | Grade 6 | Grade 7 | Grade 8 | Algebra I |
| :---: | :---: | :---: | :---: | :---: |
| 9) Data analysis. The student applies mathematical process standards to solve problems by collecting, organizing, displaying, and interpreting data. The student is expected to: | Represe
 (12) Measurement and data.
 The student applies mathematical process standards to use numerical or graphical representations to analyze problems. The student is expected to: | | (11) Measurement and data.
 The student applies mathematical process standards to use statistical procedures to describe data. The student is expected to: | |
| (A) represent categorical data with bar graphs or frequency tables and numerical data, including data sets of measurements in fractions or decimals, with dot plots or stem-and-leaf plots. | (A) represent numeric data graphically, including dot plots, stem-and-leaf plots, histograms, and box plots. | | | |
| (B) represent discrete paired data on a scatterplot. | | | (A) construct a scatterplot and describe the observed data to address questions of association such as linear, nonlinear, and no association between bivariate data. | |
| Drawing Conclusions and Solving Problems Using Representations of Data | | | | |
| 9) Data analysis. The student applies mathematical process standards to solve problems by collecting, organizing, displaying, and interpreting data. The student is expected to: | (13) Measurement and data. The student applies mathematical process standards to use numerical or graphical representations to solve problems. The student is expected to: | | | |
| (C) solve one- and two-step problems using data from a frequency table, dot plot, bar graph, stem-and-leaf plot, or scatterplot. | (A) interpret numeric data summarized in dot plots, stem-and-leaf plots, histograms, and box plots. | | | |
| | (B) distinguish between situations that yield data with and without variability. | | | |

Grade 5	Grade 6	Grade 7	Grade 8	Algebra 1
Describing Data Distribution and Drawing Inferences				
	(B) use the graphical representation of numeric data to describe the center, spread, and shape of the data distribution.	(A) compare two groups of numeric data using comparative dot plots or box plots by comparing their shapes, centers, and spreads.		
	(C) summarize numeric data with numerical summaries, including the mean and median (measures of center) and the range and interquartile range (IQR) (measures of spread), and use these summaries to describe the center, spread, and shape of the data distribution.		(B) determine the mean absolute deviation and use this quantity as a measure of the average distance data are from the mean using a data set of no more than 10 data points.	
	(D) summarize categorical data with numerical and graphical summaries, including the mode, the percent of values in each category (relative frequency table), and the percent bar graph, and use these summaries to describe the data distribution.			
		(B) use data from a random sample to make inferences about a population.		
		(C) compare two populations based on data in random samples from these populations, including informal comparative inferences about differences between the two populations.	(C) simulate generating random samples of the same size from a population with known characteristics to develop the notion of a random sample being representative of the population from which it was selected.	

Grade 5	Grade 6	Grade 7	Grade 8	Algebra 1
Considering Income and Careers				
(10) Personal financial literacy. The student applies mathematical process standards to manage one's financial resources effectively for lifetime financial security. The student is expected to:	(14) Personal financial literacy. The student applies mathematical process standards to develop an economic way of thinking and problem solving useful in one's life as a knowledgeable consumer and investor. The student is expected to:	(13) Personal financial literacy. The student applies mathematical process standards to develop an economic way of thinking and problem solving useful in one's life as a knowledgeable consumer and investor. The student is expected to:	(12) Personal financial literacy. The student applies mathematical process standards to develop an economic way of thinking and problem solving useful in one's life as a knowledgeable consumer and investor. The student is expected to:	
(A) define income tax, payroll tax, sales tax, and property tax.		(A) calculate the sales tax for a given purchase and calculate income tax for earned wages.		
(B) explain the difference between gross income and net income.	(H) compare the annual salary of several occupations requiring various levels of post-secondary education or vocational training and calculate the effects of the different annual salaries on lifetime income.		(G) estimate the cost of a two-year and four-year college education, including family contribution, and devise a periodic savings plan for accumulating the money needed to contribute to the total cost of attendance for at least the first year of college.	
Considering Saving and Investing				
		(13) Personal financial literacy. The student applies mathematical process standards to develop an economic way of thinking and problem solving useful in one's life as a knowledgeable consumer and investor. The student is expected to:	(12) Personal financial literacy. The student applies mathematical process standards to develop an economic way of thinking and problem solving useful in one's life as a knowledgeable consumer and investor. The student is expected to:	
		(E) calculate and compare simple interest and compound interest earnings.	(D) calculate and compare simple interest and compound interest earnings.	
		(F) analyze and compare monetary incentives, including sales, rebates, and coupons.	(C) explain how small amounts of money invested regularly, including money saved for college and retirement, grow over time.	
			(G) estimate the cost of a two-year and four-year college education, including family contribution, and devise a periodic savings plan for accumulating the money needed to contribute to the total cost of attendance for at least the first year of college.	

(10) Personal financial literacy. The student applies mathematical process standards to manage one's financial resources effectively for lifetime financial security. The student is expected to:
(C) identify the advantages and disadvantages of different methods of payment, including check, credit card, debit card, and electronic payments.

Considering Credit and Debt

(14) Personal financial literacy. The student applies mathematical process standards to develop an economic way of thinking and problem solving useful in one's life as a knowledgeable consumer and investor. The student is expected to:	(13) Personal financial literacy. The student applies mathematical process standards to develop an economic way of thinking and problem solving useful in one's life as a knowledgeable consumer and investor. The student is expected to:

B) distinguish between debit cards and credit cards.

(D) explain why it is important to establish a positive credit history

(E) describe the information in a

 credit report and how long it is retained.(G) explain various methods to pay for college, including through savings, grants, scholarships, student loans, and work-study. (F) describe the value of credit reports to borrowers and to lenders.

Grade 5 Grade Considering Planning and Money Management Grade Made 8 Grad				Algebra I
(10) Personal financial literacy. The student applies mathematical process standards to manage one's financial resources effectively for lifetime financial security. The student is expected to:	(14) Personal financial literacy. The student applies mathematical process standards to develop an economic way of thinking and problem solving useful in one's life as a knowledgeable consumer and investor. The student is expected to:	(13) Personal financial literacy. The student applies mathematical process standards to develop an economic way of thinking and problem solving useful in one's life as a knowledgeable consumer and investor. The student is expected to:	(12) Personal financial literacy. The student applies mathematical process standards to develop an economic way of thinking and problem solving useful in one's life as a knowledgeable consumer and investor. The student is expected to:	
			(F) analyze situations to determine if they represent financially responsible decisions and identify the benefits of financial responsibility and the costs of financial irresponsibility.	
(D) develop a system for keeping and using financial records.	(A) compare the features and costs of a checking account and a debit card offered by different local financial institutions.			
	(C) balance a check register that includes deposits, withdrawals, and transfers.			
(E) describe actions that might be taken to balance a budget when expenses exceed income.				
(F) balance a simple budget.		(B) identify the components of a personal budget, including income. planned savings for college, retirement, and emergencies. texes. fixed and variable expenses, and calculate what percentage each category comprises of the total budget.		
		(C) create and organize a financial assets and liabilities record and construct a net worth statement.		
		(D) use a family budget estimator to determine the minimum household budget and average hourly wage needed for a family to meet its basic needs in the student's city or another large city nearby.		

